355 research outputs found

    Control of human gait stability through foot placement

    Get PDF
    During human walking, the centre of mass (CoM) is outside the base of support for most of the time, which poses a challenge to stabilizing the gait pattern. Nevertheless, most of us are able to walk without substantial problems. In this review, we aim to provide an integrative overview of how humans cope with an underactuated gait pattern. A central idea that emerges from the literature is that foot placement is crucial in maintaining a stable gait pattern. In this review, we explore this idea; we first describe mechanical models and concepts that have been used to predict how foot placement can be used to control gait stability. These concepts, such as for instance the extrapolated CoM concept, the foot placement estimator concept and the capture point concept, provide explicit predictions on where to place the foot relative to the body at each step, such that gait is stabilized. Next, we describe empirical findings on foot placement during human gait in unperturbed and perturbed conditions. We conclude that humans show behaviour that is largely in accordance with the aforementioned concepts, with foot placement being actively coordinated to body CoM kinematics during the preceding step. In this section, we also address the requirements for such control in terms of the sensory information and the motor strategies that can implement such control, as well as the parts of the central nervous system that may be involved. We show that visual, vestibular and proprioceptive information contribute to estimation of the state of the CoM. Foot placement is adjusted to variations in CoM state mainly by modulation of hip abductor muscle activity during the swing phase of gait, and this process appears to be under spinal and supraspinal, including cortical, control. We conclude with a description of how control of foot placement can be impaired in humans, using ageing as a primary example and with some reference to pathology, and we address alternative strategies available to stabilize gait, which include modulation of ankle moments in the stance leg and changes in body angular momentum, such as rapid trunk tilts. Finally, for future research, we believe that especially the integration of consideration of environmental constraints on foot placement with balance control deserves attention

    Evidence of adaptations of locomotor neural drive in response to enhanced intermuscular connectivity between the triceps surae muscles of the rat

    Get PDF
    The aims of this study were to investigate changes 1) in the coordination of activation of the triceps surae muscle group, and 2) in muscle belly length of soleus (SO) and lateral gastrocnemius (LG) during locomotion (trotting) in response to increased stiffness of intermuscular connective tissues in the rat. We measured muscle activation and muscle belly lengths, as well as hindlimb kinematics, before and after an artificial enhancement of the connectivity between SO and LG muscles obtained by implanting a tissue-integrating surgical mesh at the muscles’ interface. We found that SO muscle activation decreased to 62%, while activation of LG and medial gastrocnemius muscles increased to 134 and 125%, respectively, compared with the levels measured preintervention. Although secondary additional or amplified activation bursts were observed with enhanced connectivity, the primary pattern of activation over the stride and the burst duration were not affected by the intervention. Similar muscle length changes after manipulation were observed, suggesting that length feedback from spindle receptors within SO and LG was not affected by the connectivity enhancement. We conclude that peripheral mechanical constraints given by morphological (re)organization of connective tissues linking synergists are taken into account by the central nervous system. The observed shift in activity toward the gastrocnemius muscles after the intervention suggests that these larger muscles are preferentially recruited when the soleus has a similar mechanical disadvantage in that it produces an unwanted flexion moment around the knee. NEW & NOTEWORTHY Connective tissue linkages between muscle- tendon units may act as an additional mechanical constraint on the musculoskeletal system, thereby reducing the spectrum of solutions for performing a motor task. We found that intermuscular coordination changes following intermuscular connectivity enhancement. Besides showing that the extent of such connectivity is taken into account by the central nervous system, our results suggest that recruitment of triceps surae muscles is governed by the moments produced at the ankle-knee joints

    Trunk muscle recruitment patterns in patients with low back pain enhance the stability of the lumbar spine

    Get PDF
    STUDY DESIGN: A comparative study of trunk muscle recruitment patterns in healthy control subjects and patients with chronic low back pain was conducted. OBJECTIVE: To assess trunk muscle recruitment in patients with low back pain. SUMMARY OF BACKGROUND DATA: Conflicting evidence has been reported on the level and pattern of trunk muscle recruitment in patients with low back pain. The disparities can be explained partly by methodologic differences. It was hypothesized that trunk muscle recruitment patterns may be altered in patients with low back pain to compensate for reduced spinal stability. METHODS: For this study, 16 patients with low back pain and 16 matched control subjects performed slow trunk motions about the neutral posture and isometric ramp contractions while seated upright. Ratios of electromyographic amplitudes and estimated moment contributions of antagonist over agonist muscles and of segmentally inserting muscles over muscles inserting on the thorax and pelvis only were calculated. In addition, model simulations were performed to assess the effect of changes in muscle recruitment on spinal stability. RESULTS: The ratios of antagonist over agonist, and of lumbar over thoracic erector spinae electromyographic amplitude and estimated moment contributions were greater in the patients than in the control subjects. The simulation model predicted that these changes would effectively increase spinal stability. CONCLUSIONS: Trunk muscle recruitment patterns in patients with low back pain are different from those in healthy control subjects. The differences are likely to be functional with respect to enhancement of spinal stability in the patients

    Between-day reliability of IMU-derived spine control metrics in patients with low back pain

    Get PDF
    Inertial measurement units (IMUs) are a potentially useful tool for clinicians and researchers in assessing spine movement biomechanics and neuromuscular control patterns. This study assessed the between-day reliability of the HIKOB FOX IMU in measuring local dynamic stability (LDS) and variability of trunk movements in patients with chronic low back pain (LBP). The local divergence exponent (λmax) was used to quantify LDS and the mean standard deviation (MeanSD) between cycles was used to quantify variability during 30 repetitive cycles of flexion/extension, rotation, and complex movement tasks. For λmax the average coefficient of variation (CV) was ~10% in the flexion/extension and rotation tasks, and all CV values were <20% when also including the complex task. ICC values for λmax ranged from 0.28 to 0.81. Reliability of λmax was similar between the pelvis and thorax segments (CV: ~10%, ICC: 0.48–0.78) and worse for the lumbar spine (CV: ~15%, ICC: 0.28–0.59). The CV for MeanSD was typically in the range of 20–30%, with even greater CV in the non-primary axes during each task (30–52%). Similarly, ICC values were lowest about the anterior-posterior axis in the flexion/extension task (ICC: 0.15–0.29) and largest about the longitudinal axis in the rotation task (ICC: 0.76–0.88). The moderate between-day reliability of λmax in the sagittal and transverse planes offers improvement over manual and subjective tests with poor reliability that are currently used in clinics. The minimal detectable differences presented give a threshold for change in research and rehabilitation in patients with LBP

    Effects of constrained trunk movement on frontal plane gait kinematics

    Get PDF
    Previously it has been shown that constraining step width in gait coincides with decreased trunk displacements. Conversely, external stabilization of the upper body in gait coincides with decreased step width, but this may in part be due to changes in passive dynamics of the leg. In the present study, trunk kinematics during gait were constrained without external stabilization by using an orthosis, to investigate whether step width and dynamic gait stability in the ML direction are changed in relation to trunk kinematics. Nine healthy young adults walked on a treadmill at three different speeds with no intervention and while wearing a thoracolumbar orthosis. Based on marker trajectories, trunk COM displacement, body COM displacement and velocity, step width, and margin-of-stability in ML direction were calculated. The results showed that the orthosis significantly reduced trunk and body COM displacements. As hypothesized, the restriction of trunk movement coincided with significantly decreased step width, while the margin-of-stability was not affected. These findings indicate that, when trunk movements are constrained, humans narrow step width, while maintaining a constant margin-of-stability. In conclusion, the present results in combination with previous work imply that in gait a reciprocal coupling between trunk kinematics and foot placement in the frontal plane subserves control of stability in the frontal plane

    Real-time feedback to reduce low-back load in lifting and lowering

    Get PDF
    Low-back pain (LBP) is a common health problem. Literature indicates an exposure-response relation between work-related lifting and LBP. Therefore, this study investigated effects of three kinds of real-time feedback on low-back load, quantified as lumbar moments, during lifting. We recruited 97 healthy male and female participants without a recent history of LBP and without prior biomechanical knowledge on lifting. Participants were assigned to groups based on the time of enrollment, filling the four groups in the following order: moment feedback, trunk inclination angle feedback, lumbar flexion feedback, and a control group not receiving feedback. Feedback was given by a sound when a threshold level of the input variable was exceeded. Participants were unaware of the input variable for the feedback, but were instructed to try to avoid the audio feedback by changing their lifting strategy. The groups with feedback were able to reduce the audio feedback and thus changed the input variable towards a more desired level. Lumbar moments significantly decreased over trials in the inclination and moment feedback groups, remained similar in the lumbar flexion group and increased in the control group. Between group comparisons revealed that low-back load was significantly lower in the moment and inclination groups compared to the control group. Additionally, moments were lower in the inclination group than in the lumbar flexion group. Real-time feedback on moments or trunk inclination is a promising tool to reduce low-back load during lifting and lowering

    Alterations in trunk bending stiffness following changes in stability and equilibrium demands of a load holding task

    Get PDF
    The contribution of the trunk neuromuscular system (TNS) to spine stability has been shown in earlier studies by characterizing changes in antagonistic activity of trunk muscles following alterations in stability demands of a task. Whether and/or how much such changes in the response of TNS to alteration in stability demand of the task alter spinal stiffness remains unclear. To address this research gap, a repeated measure study was conducted on twenty gender-balanced asymptomatic individuals to evaluate changes in trunk bending stiffness throughout the lumbar spine's range of flexion following alterations in both stability and equilibrium demands of a load holding task. Trunk bending stiffness was determined using trunk stiffness tests in upright posture on a rigid metal frame under different equilibrium and stability demands on the lower back. Increasing the stability demand by increasing the height of lifted load ∼30 cm only increased trunk bending stiffness (∼39%) over the lower range of lumbar flexion and under the low equilibrium demand condition. Similarly, increasing the equilibrium demand of the task by increasing the weight of lifted load by 3.5 kg only increased trunk bending stiffness (55%) over the low range of lumbar flexion and under the low stability demand condition. Our results suggest a non-linear relationship between changes in stability and equilibrium demands of a task and the contribution of TNS to trunk bending stiffness. Specifically, alterations in TNS response to changes in stability and equilibrium demand of a given task will increase stiffness of the trunk only if the background stiffness is low

    Myofascial Loads Can Occur without Fascicle Length Changes

    Get PDF
    Many studies have shown that connective tissue linkages can transmit force between synergistic muscles and that such force transmission depends on the position of these muscles relative to each other and on properties of their intermuscular connective tissues. Moving neighboring muscles has been reported to cause longitudinal deformations within passive muscles held at a constant muscle-tendon unit (MTU) length (e.g., soleus [SO]), but muscle forces were not directly measured. Deformations do not provide a direct measure of the force transmitted between muscles. We combined two different muscle preparations to assess whether myofascial loads exerted by neighboring muscles result in length changes of SO fascicles. We investigated the effects of proximal MTU length changes of two-joint gastrocnemius (GA) and plantaris (PL) muscles on the fascicle length of the one-joint SO muscle within (1) an intact muscle compartment and (2) a disrupted compartment that allowed measurements of fascicle length and distal tendon force of SO simultaneously. SO muscle bellies of Wistar rats (n = 5) were implanted with sonomicrometry crystals. In three animals, connectivity between SO and GA+PL was enhanced. Measurements were performed before and during maximal excitation of all plantar flexor muscles. In both setups, MTU length of GA+PL did not affect the length of SO fascicles, neither during passive nor active conditions. However, lengthening the MTU of GA+PL increased distal tendon force of SO by 43.3-97.8% (P < 0.001) and 27.5-182.6% (P < 0.001), respectively. This indicates that substantial myofascial force transmission between SO and synergistic muscle can occur via a connective tissue network running parallel to the series of SO sarcomeres without substantial length changes of SO fascicles

    Low back pain:Moving toward mechanism-based management

    Get PDF
    Low back pain is a complex, multifactorial, and heterogeneous condition, but this does not make it an exception in medicine. Management of low back pain based on a mechanistic approach and developing more effective multidisciplinary treatment is possible and would finally implement the biopsychosocial model of care

    Increase in heterogeneity of biceps brachii activation during isometric submaximal fatiguing contractions: a multichannel surface EMG study

    Get PDF
    The effects of fatigue emerge from the beginning of sustained submaximal contractions, as shown by an increase in the amplitude of the surface electromyogram (EMG). The increase in EMG amplitude is attributed to an augmentation of the excitatory drive to the motor neuron pool that, more importantly than increasing discharge rates, recruits additional motor units for the contraction. The aim of this study was to determine whether the spatiotemporal distribution of biceps brachii (BB) activity becomes more or less heterogeneous during a fatiguing isometric contraction sustained at a submaximal target force. Multiple electrodes were attached over the entire BB muscle, and principal component analysis (PCA) was used to extract the representative information from multiple monopolar EMG channels. The development of heterogeneity during the fatiguing contraction was quantified by applying a cluster algorithm on the PCA-processed EMG amplitudes. As shown previously, the overall EMG amplitude increased during the sustained contraction, whereas there was no change in coactivation of triceps brachii. However, EMG amplitude did not increase in all channels and even decreased in some. The change in spatial distribution of muscle activity varied across subjects. As found in other studies, the spatial distribution of EMG activity changed during the sustained contraction, but the grouping and size of the clusters did not change. This study showed for the first time that muscle activation became more heterogeneous during a sustained contraction, presumably due to a decrease in the strength of common inputs with the recruitment of additional motor units
    • …
    corecore